Imaging "invisible" dopant atoms in semiconductor nanocrystals.

نویسندگان

  • Aloysius A Gunawan
  • K Andre Mkhoyan
  • Andrew W Wills
  • Malcolm G Thomas
  • David J Norris
چکیده

Nanometer-scale semiconductors that contain a few intentionally added impurity atoms can provide new opportunities for controlling electronic properties. However, since the physics of these materials depends strongly on the exact arrangement of the impurities, or dopants, inside the structure, and many impurities of interest cannot be observed with currently available imaging techniques, new methods are needed to determine their location. We combine electron energy loss spectroscopy with annular dark-field scanning transmission electron microscopy (ADF-STEM) to image individual Mn impurities inside ZnSe nanocrystals. While Mn is invisible to conventional ADF-STEM in this host, our experiments and detailed simulations show consistent detection of Mn. Thus, a general path is demonstrated for atomic-scale imaging and identification of individual dopants in a variety of semiconductor nanostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influences of Co2+ & Er3+ Co-doping on the Structural and Physical Properties of ZnO Nanocrystals Synthesized by Hydrothermal Route

Co2+ & Er3+ co-doped ZnO nanocrystals were synthesized by the hydrothermal method at 180°C and pH= 12 for 48 h. Powder XRD patterns indicate that the Zn1-2xErxCoxO crystals (0.00<x≤0.035) are isostructural with ZnO. The cell parameters increase for Er3+ and Co2+ upon increasing the dopant content (x). SEM images show that doping of Er3+ and Co2+ into the sites of Zn2+ does not change the morpho...

متن کامل

Influences of Co2+ & Er3+ Co-doping on the Structural and Physical Properties of ZnO Nanocrystals Synthesized by Hydrothermal Route

Co2+ & Er3+ co-doped ZnO nanocrystals were synthesized by the hydrothermal method at 180°C and pH= 12 for 48 h. Powder XRD patterns indicate that the Zn1-2xErxCoxO crystals (0.00<x≤0.035) are isostructural with ZnO. The cell parameters increase for Er3+ and Co2+ upon increasing the dopant content (x). SEM images show that doping of Er3+ and Co2+ into the sites of Zn2+ does not change the morpho...

متن کامل

Implementation of EIS for dopant profile analysis in n-type silicon

An experimental setup has been developed for successive photo-electrochemical etch and EIS measurement of semiconductor samples. Furthermore an algorithm based on electrochemical capacitance-voltage (ECV) has been developed for calculating dopant profile based on the measurements by developed setup. Phosphorous diffusion profile in p-type silicon was estimated by employing developed setup and a...

متن کامل

Effects of small-angle mistilts on dopant visibility in ADF-STEM imaging of nanocrystals.

Quantitative ADF-STEM imaging paired with image simulations has proven to be a powerful technique for determining the three dimensional location of substitutionally doped atoms in thin films. Expansion of this technique to lightly-doped nanocrystals requires an understanding of the influence of specimen mistilt on dopant visibility due to the difficulty of accurate orientation determination in ...

متن کامل

Electronic Impurity Doping of Colloidal Semiconductor Nanocrystals

Doping is extremely important for controlling the electronic conductivity of bulk semiconductors. However, very few examples exist where impurities that have been incorporated into colloidal semiconductor nanocrystals affect their electronic properties. Here we will discuss the challenges in this area as well as recent progress. In particular, we will describe an approach to lightly dope semico...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 12  شماره 

صفحات  -

تاریخ انتشار 2011